New Publication: In silico Predicted Glucose‐1‐phosphate Uridylyltransferase (GalU) Inhibitors Block a Key Pathway Required for Listeria Virulence

March 8, 2018


In silico Predicted Glucose‐1‐phosphate Uridylyltransferase (GalU) Inhibitors Block a Key Pathway Required for ListeriaVirulence


Authored By: 

Melaine A. Kuenemann Patricia A. Spears Paul E. Orndorff Denis Fourches



Peptidoglycan walls of gram positive bacteria are functionalized by glycopolymers called wall teichoic acid (WTA). In Listeria monocytogenes, multiple enzymes including the glucose‐1‐phosphate uridylyltransferase (GalU) were identified as mandatory for WTA galactosylation, so that the inhibition of GalU is associated with a significant attenuation of Listeria virulence. Herein, we report on a series of in silico predicted GalU inhibitors identified using structure‐based virtual screening and experimentally validated to be effective in blocking the WTA galactosylation pathway in vitro. Several hits such as C04, a pyrimidinyl benzamide, afforded promising experimental potencies. This proof‐of‐conceptstudy opens new perspectives for the development of potent and selective GalU inhibitors of high interest to attenuate Listeria virulence. It also underscores the high relevance of using molecular modeling for facilitating the identification of bacterial virulence attenuators and more generally antibacterials.​


The full text appears in the Molecular Informatics journal (DOI: 10.1002/minf.201800004).

Please reload

  • Twitter Clean Grey
  • LinkedIn Clean Grey

© 2015 by DF. Proudly created with